Areas

Terms:

P: perimeter distance
A: area
r: radius
D: diameter
n: number of sides

Triangles Triangle a h b c θ θ1

h=bsinθ=atanθtanθ1tanθ+tanθ1

A=12ah=12absinθ=a22sinθsinθ1sinθ+sinθ1

s=a+b+c2, then A=s(sa)(sb)(sc)
(Heron’s formula)

P=a+b+a2+b22abcosθ=a(1+sinαsin(θ+θ1)+sinθsin(θ+θ1))

Equilateral Triangle Equilateral Triangle a h a θ

h=32a P=3a A=34a2=13h2

Isosceles triangle Isosceles Triangle a h b b θ θ

h=a2tanθ=bsinθ θ=tan-1(2ha)

a=2bcosθ b=h2+a24

A=12b2sinθ

Square

P=4a A=a2

Rectangle

P=2(a+b) A=ab

Trapezoid Trapezoid a h b

A=a+b2h

Regular Polygon

P=na θ=180°(12n), peak angle ϕ=180°n, central angle Regular polygon a θ
A=an24tan(πn) a=4Atan(πn)n

if n is even: Lsharps=Lflatscosϕ a=Lflatstanϕ

Irregular Polygon

Irregular PolygonArea

Find vertex coordinates, listed in a counter-clockwise order: (x1, y1), (x2, y2), …, (xn, yn). Then:

A=12(x1y2x2y1+x2y3x3y2++xny1x1yn)

Circle Circle r

P=πD=2πr A=πr2=πD24

Ellipse

A=πab Ellipse a b

Circumference. No closed formula exists, so we have approximations and series expansions.

h=(ab)2(a+b)2

Pπ(a+b)(1+3h10+43h) (Ramanujan 1914)

P=π(a+b)(1+14h+i=2((2i3)!!(2i)!!)2hi) (Bessel 1825)

Hollow circle

Circular Sector Circlular sector r c L θ

L=rθ c=2rsin(θ2) A=12r2θ

Circular Segment

L=rθ

c=2rsin(θ2)=2rptan(12θ)=2r2rp2=2h(2rh) Circlular segment r c h L θ

rp=rh=rcos(12θ)=12ccot(12θ)=124r2c2

θ=Lr=2cos-1(rpr)=2tan-1(c2rp)=2sin-1(c2r)

A=12r2(θsinθ)=12(rLrpc)=r2cos-1(rpr)rpr2rp2=r2cos-1(rhr)(rh)2rhh2

Elliptical Sector Elliptical sector a b θ0 θ1

A=F(θ1)F(θ0), where:

F(θ)=ab2(θtan-1((ba)sin(2θ)b2cos2θ+a2sin2θ))